Lessons Learned from Multiple Citizen Science Projects: Organizer, Participant, and Accidental Success

Matt Heavner¹, ², and Claude McMillan³ ¹, ³
Heavner@lanl.gov, http://crd.lbl.gov/matt-heavner

ABSTRACT
During the previous 15 years, we have been involved with multiple distinct efforts to engage the public in citizen science participation. The previous projects include reporting of middle atmospheric lightning visual observations through the web, interactive reporting and contribution of information about a glaciated watershed in southeast Alaska through a geoski platform, and involvement as contributors to an all-sky camera meteor observation network. We present lessons learned from these three experiences.

INTRODUCTION
Three distinct scientific projects are described below. Each project had a component of engaging citizen scientists. The first two projects are described from the principal-investigator-scientists’ perspective. In contrast, the third project is described from the citizen-scientists’ perspective. Project one (sprites) had a minor citizen-scientist reporting mechanism which provided surprisingly successful engagement. Project two (SEAMONSTER) had a specific engagement aspect which only succeeded after targeted partnership with visitor center interpreters. Project three (All Sky Camera Network) is reliant upon individuals hosting equipment to make measurements. After a brief project description, the results of the citizen-science engagement are briefly described.

CONCLUSIONS
Reflecting upon the experiences of public engagement and attempts at citizen science in the projects described and others, we conclude: The initial enrollment of citizen scientists requires sufficient technology and appropriate engagement. Citizen scientists lose interest and stop participating if their observations “disappear.” When volunteer participants can view their contributions and the impact of those contributions, the contributions are much more likely to continue.

Lessons from Multiple Citizen Science Projects

Project One: Sprites 1994 - present
The University of Alaska Fairbanks sprites research effort attempted to understand the middle atmospheric energy implications associated with sprites, elves, elven (“middle atmosphere lightning”). In addition to disseminating results through publicly available web pages, the group set up a “sprite reporting” webpage with basic forms. After several years of operation, even the simplest web-forms broke. The “reporting page” was changed to an extremely primitive web page requesting information via email, as shown below.

The image at right shows one of the more dramatic images of a sprite event captured during the University of Alaska research efforts.

The primary focus of the sprites research was on the scientific discovery and inquiry aspects of the project. However, the inclusion of the option for “citizen science” reports of individual observations of sprites and elves remains an important aspect of the project. The “citizen” reports were included as an appendix to a 2000 PhD dissertation [4]. Reports of sprite and jet observations (shown below) have been received from observers in 29 states across the United States, and several from locations outside the country. The interest in self-reporting observations, especially among pilots, illustrates that tapping into a somewhat rare, but quite notable, phenomenon triggers public participation despite technological implementation.

The SEAMONSTER effort to engage citizen science through the option to edit directly our project wiki was a failure. The mediawiki installation makes use of the PostGIS database already containing the SEAMONSTER data.

CONCLUSIONS

Project One: Sprites 1994 - present
The South East Alaska Monitoring Network for Science, Telecommunications, Education, and Research (SEAMONSTER) is a collaborative environmental research program centered at the University of Alaska Southeast in Juneau [2]. The emphasis on SEAMONSTER during its three-year initial run was terrestrial hydrology in glacier-covered watersheds, and in particular on near-real-time data recovery from sensors by means of radio telemetry and related sensor network technology.

The SEAMONSTER sensor web tested new technology development for NASA, documenting impacts of climate change and glacier control of watersheds, and providing views and information about a popular tourist destination (approximately one million tourists visit Juneau every year). Education and public outreach are a major component of the SEAMONSTER project [1]. As part of the efforts for education and public outreach as well as facilitating data discovery and sharing by other scientists, a public wiki was conceived of as a two-way conduit for general information about the sensor web. The wiki is intended to have a larger scope: a hypothetical example is a biologist interested in wind and temperature data in the Juneau area for a migratory bird study. The SEAMONSTER meteorologic data could be discovered and the migratory bird information could be easily added by the biologist to the public wiki. The mediawiki engine is used to implement the public wiki, requiring a SQL database back-end. Typically, mediawiki is configured to use MySQL. However, the SEAMONSTER mediawiki installation makes use of the PostGIS database already containing the SEAMONSTER data.

Project Two: SEAMONSTER 2005 - present

The SEAMONSTER effort to engage citizens through partnership with visitor center interpreters. Project three (All Sky Camera Network) is reliant upon individuals hosting equipment to make measurements. After a brief project description, the results of the citizen-science engagement are briefly described.

CONCLUSIONS

The initial enrollment of citizen scientists requires sufficient technology and appropriate engagement. Citizen scientists lose interest and stop participating if their observations “disappear.” When volunteer participants can view their contributions and the impact of those contributions, the contributions are much more likely to continue.

ACKNOWLEDGMENTS

Project one (sprites) was funded by NASA Grant NAG5-5109 and National Science Foundation Grant ATM-0217861. Dr. Davis Nutkis and Dr. Eran Hood were key and excellent mentors on project one. Funding for project two (SEAMONSTER) was provided through NASA Grant AST-05-03150, NOAA Education Partnership Panel Interdisciplinary, Scientific Environmental Technology (ISET) Cooperative Science Center Grant, and NSF REU Grant No. 0159380. Dr. Dennis R. Fatland, Dr. Erin Hood, and Dr. Cathy Connor were critical to the successes of SEAMONSTER. Project three (all-sky meteor cameras) is a collaboration between NSUM, S目ndal National Laboratory, (SNL), and NASA Marshall Space Flight Center (MSFC). SNL provided soil sensing and NASA MSFC provided the All Sky and Guided Automatic Real-time Detection (ASGARAD) calibration and processing code.

REFERENCES

Project Three: All-Sky Meteor Camera 2010 - present

The Klipsch School of Electrical and Computer Engineering at New Mexico State University is developing an all-sky camera system intended to monitor, track, and analyze atmospheric meteor events to provide a database for assisting satellite operators in separating natural and man-made events and for instrument calibration tests.

The program objectives include: 1) field a network of uplinking, wide-angle view cameras at a number of sites throughout the contiguous United States, 2) develop the network to access/archive data and make the data available for processing and analysis by interested parties, 3) develop software tools for calibration, removal of detector effects and anomalies, automatic event detection and correlation among stations, and automatic trajectory computation, and 4) develop a companion multi-band detector for the all-sky sensors to improve the diagnostic capability of the camera network.

One all sky camera is hosted at the Heavner household for the NSUM all-sky meteor camera network. There are sporadic communications from the NSUM and SNL personnel. A web interface to data collected is illustrated above. Many of the cameras are situated at institutional host sites so minimizing host intrusion may be important. However, reflecting on my experience hosting the camera, a monthly email newsletter with network updates and links to recent interesting observations would provide additional motivation and positive feedback for contributors.